전도체

전도체

[ conductor ]

도체(conductor)는 전기, 열, 또는 소리를 전달할 수 있는 물질을 의미한다. 전도체(electrical conductor)는 전기를 잘 통하는 물질을 뜻하며, 물질이 전기를 전달하는 능력을 전기 전도성(또는 전도율)(electrical conductivity)이라고 한다. 철과 구리 같은 대부분의 금속(metal)은 전도체로서 전류를 전달하는 전선 등을 만드는 데 쓰인다. 일부는 반도체(semi-conductor)이며, 그 이름에서 알 수 있듯이 전기가 흐를 수는 있지만 그다지 좋은 전도성을 나타내지 않는다. 또한 일부 물질은 전기가 흐르는 것이 매우 어려워 저항기(resistor)로 작용한다. 전류의 흐름을 차단하는 물질을 절연체(insulator)라고 하며, 전선의 외부 피복으로 사용되는 플라스틱이 절연체로서 전기가 외부로 빠져나가지 못하게 하고, 외부의 감전도 방지한다. 매우 낮은 온도에서 몇몇 물질은 전기 저항이 전혀 없는 초전도체(super-conductor) 특성을 나타내기도 한다.

일상생활에서 흔히 쓰이는 전도체인 구리선()

목차

전류와 저항

전류는 음전하를 띤 전자(electron), 양전하를 띤 정공(hole) 및 양이온(cation) 또는 음이온(anion) 등과 같은 전하 운반체(charge carrier)가 특정 물질 내에서 흐름으로써 생성된다. 금속에서는 전자가 주요 전하 운반체로 사용되나 전지의 양이온성 전해질(electrolyte) 또는 연료 전지의 양성자와 같이 양전하 운반체가 사용될 수도 있다. 전도체에 전류가 흐를 때 저항은 전도체 물질의 고유한 특성과 치수(dimension)에 따라 달라진다. 일반적으로 주어진 물질의 저항은 단면적에 반비례하며 길이에 비례한다. 예를 들어 두꺼운 구리 전선은 얇은 전선보다 저항이 낮으며, 긴 구리 전선은 동일한 두께의 짧은 구리 전선보다 저항이 높다.

금속의 전도 특성

금속은 특징적인 광택이 있고, 전기 및 열전성이 우수하며, 펴지는 성질이 있는데 이 모든 성질은 공통으로 ‘전자 바다(sea of electron)’라고 불리는 금속 결합(metallic bond)의 특성에서 비롯된다. 금속의 광택과 전기 전도성은 입사 광선의 진동 전기장이나 전위차에 의한 전자들의 이동에 기인하며, 높은 열전도도(thermal conductivity) 역시 전자 이동의 결과로 진동 원자와 충돌하여 에너지를 흡수하고 이것을 다른 원자로 전달할 수 있기 때문에 나타나는 현상이다. 금속의 용이한 역학적 변형도 전자 이동에 의해 나타나는 특성 중 하나로, 고체가 변형될 때 전자 바다가 빠르게 재조정되어 금속을 이루는 원자들을 서로 묶을 수 있기 때문이다. 반도체 역시 전기 전도성을 지니는데 금속과 반도체를 구분하는 기준은 전기 전도성의 온도 의존성이다. 금속성 전도체는 온도 증가에 따라서 전기 전도성이 감소하나, 반도체는 온도가 증가함에 따라 전기 전도성이 증가한다. 초전도체의 경우 임계 온도(critical temperature, Tc) 이하의 온도에서 저항이 없는 특별한 경우의 물질이다.   

온도에 따른 전기 전도성의 변화는 물질을 금속, 반도체 또는 초전도체로 구분하는 기준이 된다(출처: fig. 20.50 in page 724, Peter Atkins and Julio De Paula, Physical chemistry, 8th ed.; Oxford University Press: Great Clarendon Street, Oxford.)

전도체의 종류

전도체에는 금속, 전해질, 초전도체, 반도체, 플라스마(plasma) 및 흑연과 전도성 고분자(conductive polymer)와 같은 일부 비금속 도체가 있다. 구리는 전도성이 높은 금속으로 다른 전도체의 전도성을 상대 비교하는 국제 표준으로 사용된다. 이 표준을 국제 연동표준(International Annealed Copper Standard, IACS)이라고 하는데, 상온에서 가공한 구리선을 약 600℃의 가열로에서 열처리하여 서서히 식혀 만든 연동(annealed copper)의 20℃에서의 전도율 58 MS/m를 100% IACS로 정하고 다른 전도체의 전도성을 상대 비교하기 위해 % IACS 단위로 나타낸다.

은(Ag)은 구리보다 약 6% 전도성이 더 높지만, 경제적인 이유로 실용적이지 않아, 인공위성과 같이 높은 전도성이 필요한 특수 장비에 한정적으로 사용된다. 알루미늄(Al)은 전력 전송(electric power transmission)과 배전(electric power distribution) 분야에서 점차 기존의 구리를 대체하고 있는 금속으로써, 단면적이 같은 구리선에 비해 전도율이 61% 정도에 불과하나 밀도가 구리보다 낮아 질량당 전도성이 구리의 두 배가 된다. 또한 알루미늄의 무게당 가격이 구리의 약 3분의 1에 불과하기 때문에 대량의 도체가 필요할 때 상당한 경제적 이점을 갖는다. 알루미늄 배선의 단점으로는 구리보다 기계적 및 화학적 안정성이 낮다는 점으로, 연결부위에 쉽게 절연성 산화물을 형성하여 저항을 증가시킬 수 있고 황동 재료보다 열팽창 계수(coefficient of thermal expansion)가 커서 연결이 느슨해질 수 있다.

대표적인 금속 전도체의 전기 저항과 전도율
물질 20°C에서의 전기 저항(ρ) [Ω·m] 20°C에서의 전도율(σ) [S/m]
1.59 × 10−8 6.30 × 107
구리 1.68 × 10−8 5.96 × 107
알루미늄 2.82 × 10−8 3.50 × 107

참고자료

  1. Retrieved on 2019-5-29.
  2. Peter Atkins.; Tina Overton.; Jonathan Rourke.; Mark Weller.; Fraser Armstrong. Shriver & Atkins’ inorganic chemistry, 5th ed.; Oxford Press: Oxford, 2010.

동의어

전도체